
Specific Power 

 

The PhD research conducted by Dowdle [2] discusses the design of a high-specific-power, air-

cooled electrical machine for aerospace propulsion applications. Dowdle presents a technical 

model that relates the power per unit volume of a simplified electrical machine to several design 

parameters: 
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Where 𝜏̅ is the electromagnetic shear stress, ℓ/𝑟 is the length-to-radius ratio of the machine, 𝑈 is 

the rotor tip speed, and 𝑃 is the rated power. Assuming that the mass density of the electrical 

machine 𝜌𝐸𝑀 =
𝑚

𝑉
 is approximately constant across machines, this gives a formula for our 

primary figure of merit, specific power, as a function of design parameters: 
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This reveals that, on a first order basis, specific power scales with rated power to the negative 

one-half power. Dowdle proposes the design of a 3.6 MW electrical machine embedded into the 

low-pressure compressor of a gas generator. The design has the following parameters: 

 

Specifications [unit] Design Value 

Specific Power [kW/kg] 14.8 

Electromagnetic Shear 

Stress [kPa] 

55.4 

Length-to-Radius Ratio 1.51 

Tip Speed [m/s] 230.28 

Rated Power [MW] 3.6 

 

The machine mass density is not known exactly, but it can be estimated using our ideal electrical 

machine specific power formula: 
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This is close to the density of copper (8960 𝑘𝑔/𝑚3), a major material in electrical machines, so 

this is likely a reasonable estimate. 

 



Let us consider a sensitivity analysis of the specific power of this design with respect to the 

electromagnetic shear stress, length-to-radius ratio, and tip speed. Taking partial derivatives of 

the specific power formula yields: 
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And therefore, the following normalized sensitivities: 
 

Parameter Normalized Sensitivity 

𝜏̅ 1.5 

ℓ/𝑟 0.5 

𝑈 1.5 

 

This can be interpreted as the percent increase in each parameter required per percent increase in 

specific power. 

 

Suppose we wanted to achieve a specific power of 17.1 kW/kg with this 3.6MW machine, the 

same achieved by the MIT GTL 1MW machine. Using the idealized specific power formula, the 

required increases to design parameters are given in the following tornado chart: 

 

 
 

The major trade space in the design of an electrical machine is between power and specific 

power. The idealized specific power formula asserts that 𝑆𝑃~𝑃−
1

2. However, this neglects the 

fact that the optimal or achievable EM shear stress, length-to-radius ratio, and tip speed change 

with the power of the machine. In a sequence of optimizations performed by Dowdle, it was 



determined that a more realistic scaling law is 𝑆𝑃~𝑃−
1

4, which is more favorable for creating 

high-specific power, high-power machines. This scaling law effectively describes the shape of a 

praetor front in the power-specific power trade space. The pareto front can be placed on 

Dowdle’s survey of currently available electrical machines: 

 

 
 

The achievement of a 1 MW machine with a specific power of 17.1 kW/kg by the MIT GTL in 

2025 can be seen as a shift in this pareto front: 

 

 
 

Total System Mass 

 

The total system mass of an integrated motor or generator system is the sum of the masses of the 

electrical machine, power electronics, gearbox, and shaft: 

2022 Pareto Front 

2022 Pareto Front 

2025 Pareto Front 



 

𝑚𝐼𝑀𝐺 = 𝑚𝐸𝑀 + 𝑚𝑃𝐸 + 𝑚𝐺𝐵 + 𝑚𝑠 

 

As shown previously, the state-of-the-art pareto front for electrical machines gives the specific 

power as a function of the rated power: 
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Therefore, given the definition of specific power, we have: 
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For the specific power of power electronics, the 2030 goal set by NASA for the STARC-ABL 

electrified aircraft design is 7.5 kW/kg [2]. Therefore: 
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To conduct mission analysis on a hybrid-electric aircraft, Antcliff et al. [3] constructed a 

regression model that relates gearbox weight to power. Assuming a gear ratio of unity and a 

power input in kW, the regression model gives: 
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The amount of material necessary for the shaft is set by the torque on the shaft. The required 

shaft diameter for a given torque 𝑇 is given by: 
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Therefore, for a given power, the required shaft diameter is: 
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The weight of the shaft as a function of the material density 𝜌 and an assumed constant length-

to-diameter ratio and safety factor is: 
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Therefore, we can assemble a model for the total system mass a function of parameters power 

𝑃[𝑘𝑊], yield strength-to-weight ratio of the shaft material 
𝜏𝑦𝑖𝑒𝑙𝑑

𝜌
, and 𝑅𝑃𝑀. 

 

Assuming a safety factor of 2 and a length-to-diameter ratio of 4 for the shaft, the following 

design parameters are representative of the integration of the MIT GTL 1 MW electrical machine 

design: 

 

Specifications [unit] Design Value 

Total System Mass [kg] 184.93 

Power [kW] 1000 

RPM 12500 

Yield strength to weight 

ratio [m^2/s^2] 

60727.04 

 

Using finite differences, we can obtain the normalized sensitivities for the parameters: 

 

Parameter Normalized Sensitivity 

𝑃 1.157 

𝑅𝑃𝑀 -0.041 

𝜏𝑦𝑖𝑒𝑙𝑑/𝜌 -0.001 

 

To achieve just a 0.1% mass reduction, the following improvements to these parameters are 

required: 

 

 
 

This tornado chart is dominated by the lack of sensitivity of mass to shaft structural efficiency. 

The mass of the system is by far the most sensitive to the power. 

 


