Difference between revisions of "Interplanetary SmallSats"

From MIT Technology Roadmapping
Jump to navigation Jump to search
Line 146: Line 146:


===Description of Tradespace===
===Description of Tradespace===
The above morphological matrix represents possible decision variables for certain components in a subset of subsystems to consider in the context of an interplanetary SmallSat. Specifically, the options for DSN-compatible radios are limited to only four: the Iris radio (Space Dynamics Laboratory), SCR-106 (Innoflight, Inc.), SCR-108 (Innoflight, Inc.), and SWIFT-SLX (Tethers Unlimited). The smallest bus size for deep space has been 3U ; the most popular choice is 6U


==Key Publications and Patents==
==Key Publications and Patents==

Revision as of 21:21, 3 November 2024

Technology Roadmap Sections and Deliverables

Roadmap Overview

Interplanetary small satellites (SmallSats) are compact, lightweight spacecraft that are designed for science, exploration, and technology demonstration missions beyond Earth's orbit. These satellites, typically ranging in size from 3U-6U and up to 250 kg, leverage advancements in miniaturization, materials, and propulsion technology to conduct missions at a fraction of the cost of a traditional large spacecraft.

Example of an interplanetary SmallSat: Lunar Flashlight, a 6U CubeSat.

Small satellites-- including CubeSats, a specific type of SmallSat-- have traditionally been used in Low Earth Orbit (LEO) since the early 2000's. However, the key differences between interplanetary small satellites and Earth-observing small satellites arise from the need to function at distances much farther than LEO. One key difference is that current designs of interplanetary SmallSats require propulsion subsystems, a feature that is optional for Earth-orbiting SmallSats. Another difference is the method of communication. Whereas LEO satellites can communicate with simple RF ground stations nearly anywhere in the world, the infrastructure required to send and receive signals becomes increasingly complex with distance beyond LEO. Larger ground antennae are required to make up for signal weakening due to distance and free space path loss, which calls for the use of the Deep Space Network. Recent technological advancements, such as the creation of the Iris radio, have allowed these small spacecraft to take on interplanetary missions.

Unlike previous iterations of interplanetary spacecraft (Voyager, Cassini, Mars Reconnaissance Orbiter, etc.), SmallSats can accomplish similar feats to their predecessors for less. Examples of this technology include MarCo (twin 6U CubeSats) and Lunar Flashlight (6U lunar CubeSat), as well as upcoming missions such as Lunar Trailblazer (lunar SmallSat) and EscaPADE (Mars SmallSat twins). These satellites offer new opportunities for low-cost, high-impact science. NASA's SIMPLEx (Small, Innovative Missions for PLanetary Exploration) initiative anticipates this paradigm shift by supporting the formulation of future SmallSat missions. As technology continues to evolve, interplanetary SmallSats are expected to play an increasingly significant role in space exploration.

Design Structure Matrix (DSM) Allocation

4SMS DSMTree.jpg

Our DSM explores the uses and applications of different technologies within the autonomous space exploration taxonomy. We classified interplanetary small satellites within the orbiting spacecraft section of interplanetary autonomous spacecraft. The subsystems are listed within 4SMS, but could apply to most of the other technologies that stem from 2EOT or 2IPT.

In the top box, the higher level systems are categorized with regard to their applications. These are defense, science, and servicing. Defense refers to spacecraft that can be equipped for surveillance, intelligence, or weaponry. Science refers to spacecraft whose primary purpose is to collect and relay scientific information. Servicing includes spacecraft that support other preexisting missions or Earth-based systems such as Internet or GPS. We further explored what subsystems that are common to most spacecraft might support either of those three applications. Some boxes represent impossible connections; a spacecraft is either Earth-orbiting or interplanetary, it cannot be both. These intersections are highlighted in light gray.

The bottom box classifies the purpose and relationships of the subsystems that may make up an autonomous spacecraft. The three categories are information processing, transportation/navigation, and system support. If two subsystems do not have meaningful interaction, the box is left blank.

Legend:

  • D – Defense Application
  • C – Science Application
  • V – Servicing Application
  • I – Information Processing
  • T – Transportation/Navigation
  • S – System Support
  • Grey box – Incompatible Connections

4SMS DSM.png

Roadmap Model using OPM

An example of a typical interplanetary SmallSat is shown in the Object-Process-Model (OPM) diagram below. The overall Object, Interplanetary SmallSat, is broken into Object blocks representing the various subsystems that comprise the SmallSat. Each subsystem is broken down even further to the component level. Component interactions are shown via the Process blocks and Relations arrows. The interactions between the SmallSat and the DSN, an external network, is also represented.

4SMS OPM.png

Figures of Merit (FOMs)

4SMS FOM.png

Alignment with Company Strategic Drivers

aiden -- are we repping nasa?

Position of Company vs. Competition

carissma -- is anyone else doing this?

Technical Model

Morphological Matrix

Subsystem Component Decision Variable 1 2 3 4
Communications DSN-Compatible Radio Data rate [kbps] 5313 20000 10000 6000
Transmitted Power [W] 3 2.5 3 2
Mass [g] 875 290 404 300
Structure Bus Size 3U 6U 12U SmallSat
Maxmimum Mass 6 kg 14 kg 25 kg 250 kg
Power Solar Panels Cell Material GaAs ZTJ CTJ30 --
Cell Efficiency 30% 29.50% 29.50% --
Propulsion Propulsion System Type Cold gas Ion Propellant Solar sail
GNC Gyroscope Type Gyroscope IMU IRU Magnetometers
Sun Sensors Type CSS Cosine Digital Quadrant
Star Trackers FOV [deg] Small < 10 Average < 15 Large > 15 --
Avionics Memory Storage Type SRAM DRAM Flash CRAM

Description of Tradespace

The above morphological matrix represents possible decision variables for certain components in a subset of subsystems to consider in the context of an interplanetary SmallSat. Specifically, the options for DSN-compatible radios are limited to only four: the Iris radio (Space Dynamics Laboratory), SCR-106 (Innoflight, Inc.), SCR-108 (Innoflight, Inc.), and SWIFT-SLX (Tethers Unlimited). The smallest bus size for deep space has been 3U ; the most popular choice is 6U

Key Publications and Patents

Publications

The Lunar Polar Hydrogen Mapper CubeSat Mission IEEE

We do not currently understand the concentration of water ice volatiles at the South Pole of the Moon. Luna-H Map is a 6U CubeSat that will pass over the South Pole with a neutron spectrometer (Mini-NS) to map hydrogen concentrations. Components include: Mini-NS (payload), Iris radio, BIT-3 ion thruster (propulsion), MMA Design HaWK and eHaWK solar arrays (power), BCT XBI-50 (avionics and GNC).

Lunar Flashlight: Illuminating the Lunar South Pole IEEE

We do not currently understand the composition, quantity, distribution, and form of water and other volatiles at the South Pole of the Moon. Lunar Flashlight is a 6U CubeSat that will pass over the South Pole with an infrared spectrometer to determine concentrations of water ice on the Moon. Components include: BCT XACT-50 (attitude control), Sphinx using F Prime (avionics), Iris radio, 4x 100mN ASCENT thrusters (propulsion), trifold MMA Design High Watts per Kilogram solar arrays and 2Ux3U solar arrays.

NASA’s Lunar Trailblazer Mission: A Pioneering Small Satellite for Lunar Water and Lunar Geology IEEE

We do not understand the form, abundance, and distribution of water in the South pole, nor do we have detailed maps of surface temperatures. Lunar Trailblazer is a science-driven SmallSat. Components include: HVM^3 High-resolution volatiles and minerals Moon mapper imaging spectrometer (payload), LTM Lunar Thermal Mapper thermal infrared multispectral imager (payload), monoprop hydrazine system (propulsion), Iris radio, Sphinx (avionics).

MarCO: Interplanetary Mission Development on a CubeSat Scale Springer

MarCO is a twin 6U CubeSat mission that launched with the Insight lander. Its purpose was to relay data from the Insight lander to the DSN to account for a MEP coverage gap during Insight’s early operations. Components include: Iris radio, MMA Design LLC 3U solar arrays, BCT XACT (ACS), cold gas propulsion, cameras.

CAPSTONE: A CubeSat Pathfinder for the Lunar Gateway Ecosystem Small Satellite Conference

CAPSTONE is a 12U CubeSat mission whose purpose is to demonstrate a near-rectilinear halo orbit that will be used for the Lunar Gateway and to demonstrate the use of the Cislunar Autonomous Positioning Systems. Components include: Tyvak 12U bus, CAPS (payload), monopropellant hydrazine thrusters.

Patents

SmallSat Platform with Standard Interfaces

Patent US11208217 B1

CPC: B64G 1/10, B64G 1/428, and B64G 1/641

Cylindrical SmallSat platform (bus) design with a pre-determined electrical and mechanical interfaces including a payload adapter ring. “CapSat” alternative to the traditional CubeSat; variety of sizes included.

SmallSat Hybrid Propulsion System

Patent US11578682B2

CPC: F02K 9/32, F02K 9/80, and F02K 9/95

Propulsion system suitable for SmallSats and CubeSats. The basis is a hybrid solid rock motor including oxidizer tanks, nozzle, igniter, poly methyl methacrylate (PMMA) fuel, cold gas thrusters. To knowledge: not yet used in space