Difference between revisions of "AI Safety Aviation"

From MIT Technology Roadmapping
Jump to navigation Jump to search
Line 15: Line 15:


[[File:AVIAIOPD3.png | left | x800px | OPD]]
[[File:AVIAIOPD3.png | left | x800px | OPD]]
[[File:AVIAIOPL.png | left | x600px | OPD]]





Revision as of 06:25, 5 November 2024

Roadmap Overview

FOCUS: Flight Operational Companion for Unexpected Situations

FOCUS is an advanced, AI-driven assistant designed to help commercial pilots manage sudden and surprising events within the cockpit. In high-stress situations, pilots may experience natural “freeze” reactions, delayed responses, or unintended inputs, which can compromise safety and increase risk. FOCUS has been designed to address this challenge by monitoring for signs of such startling events in aircraft readings and pilot biometrics. After detection, FOCUS will provide real-time guidance to help pilots quickly regain situational control. Through intuitive, timely interventions, FOCUS enhances flight safety by enabling pilots to confidently navigate complex and unexpected scenarios. This technology roadmap outlines the developmental path for FOCUS, highlighting its role in advancing safety, reducing operational risks, and supporting pilots with reliable, real-time assistance.

Design Structure Matrix (DSM) Allocation

Decomposition of 3ADC

DSM of 3ADC

Roadmap OPD

In the figure below, we provide an Object-Process-Diagram (OPD) of the 3ADC roadmap. This diagram captures the main object of the roadmap (FOCUS), its main process (Teaming), the various tools required, the sub-processes required for FOCUS, and the change in the status of the pilot as a result of Teaming. Additionally, we have included a breakdown of the Temaing process into its three sub-processes (Detecting, Supporting, and Augmenting).

OPD
OPD


Figures of Merit

Important FOMs for 3AISC
Figure of Merit Description Trends Units
Incident Rate Rate of incidents and accidents normalized by flight time aircraft decreasing

incidents passenger mile

System Maintainability How much time is spend maintaining aircraft systems, measured by comparing maintenance time per flight time decreasing

maintenance hours passenger mile

Response Time Time required to identify and mitigate safety issues flat

minutes

System Uptime Amount of time aircraft is available to be dispatched on a mission as a percentage of wall time increasing

%

Cognitive Load on Crew As measured by industry standard NASA TLX score flat

unitless

Detail of Accidents per passenger hour

Normalized Accidents per Year, United States General Aviation Fleet