Difference between revisions of "Sustainable Aviation Fuel"
Line 122: | Line 122: | ||
==Financial Model== | ==Financial Model== | ||
For financial assessment, we use the net present value (NPV) analysis. The key assumptions are summarized | For financial assessment, we use the net present value (NPV) analysis. The key assumptions are summarized: | ||
* abc | |||
* cde | |||
==List of R&T Projects and Prototypes (R&D Portfolio)== | ==List of R&T Projects and Prototypes (R&D Portfolio)== |
Revision as of 12:03, 21 November 2023
Technology Roadmap Sections and Deliverables
Our technology roadmap identifier is shown as:
- 2SAF - Sustainable Aviation Fuel
This indicates that we are dealing with a “level 2” roadmap at the product level, where “level 1” would indicate a market level roadmap and “level 3” or “level 4” would indicate an individual technology roadmap.
Roadmap Overview
Sustainable aviation fuel (SAF) is a strong candidate to deal with global warming in the context of aviation, using low carbon footprint resources such as biomass, waste oil, CO2, and water. SAF has a good compatibility with the present aircraft. SAF has similar characteristics to the current jet fuel and can be mixed with it, so the architecture of aircraft does not need to change. On the other hand, another strong alternative for low carbon footprint fuel is hydrogen, which needs the rearchitecting of the aircraft because of its small density and temperature, affecting the vehicle size. The following figure coming from FAA shows SAF is the key toward the ambitious goal of "net zero CO2 emissions" in aviation.
For producing SAF, there are several pathways depending on feedstock and the way of conversion from feedstock to SAF. However, each pathway has advantages and disadvantages such as cost, scalability, and technological readiness. This roadmap tries to identify the impactful technologies on the feasibility of SAF, and show their development plan.
Design Structure Matrix (DSM) Allocation
The above 2SAF tree shows the relationship between other technologies related to the SAF. Specifically, the enabling technologies to SAF, by key feedstocks and processes, are considered. The enabling of SAF with the use of existing feedstocks are indicated with the connection of 2SAF to 3HEF, 3ATJ, 3FTC, 3PTL, 4BAF, 4CLS, 4CNB, and 4WCO. The enabling of SAF through various processes are shown through 2SAF connections to 4ROI, 4NTF, 4HPS, 4SEX, 4FNT, 4GAS, 4FTS, 4ELS, 4ICS, and 4MES. The connections of SAF to Level 3 and 4 technologies are shown in the DSM. In the following section, further details on the SAF production architecture is presented using Object-Process-Model (OPM).
Roadmap Model using OPM
The Object-Process-Model (OPM) of the 2SAF - Sustainable Aviation Fuel roadmap is presented in the figure with the Object-Process-Language (OPL) below. This diagram shows the processes (Pretreating, and SAF Converting) for producing SAF with the representative pathways with different types of feedstocks. We include four different representative SAF producing categories: 1) Hydroprocessed Esters and Fatty Acids (HEFA) with recycled oils, bio-oils, and animal fat, 2) Alcohol-to-Jet (AtJ) with cellulose, 3) Fischer-Tropsch (FT) with coal, natural gas, and biomass, and 4) Power-to-Liquid (PtL) with water and CO2.
Three functional zoom-up views of the OPM are shown in the following figures.
PtL Pretreating (FT pathway)
AtJ Converting
AtJ Converting(Methanol pathway)
Figures of Merit
The table below shows a list of FOMs by which sustainable aviation fuel can be assessed. The first four (shown in bold) are identified as main FoMs for sustainable aviation fuel with the following reasons: 1)One of the biggest disadvantages of SAF is its cost. 2)To assess the impact of flight performance, fuel consumption per hour is chosed. 3)Currently, SAF blend ratio to the current jet fuel is up to 50%, and this blend ratio needs to be improved for net zero CO2 emission. 4) CO2 emission when producing SAF also needs to be assessed to fairly evaluate the net CO2 emission. The other five FoMs are used for analyzing the trade-off of the technology choice of SAF production.
The figure below shows an expected SAF blending ratio improvement with seven approved technologies by ASTM. For predicting the improvement rate, the logistics (growth) function is used to fit the seven approved technologies, assuming the net-zero CO2 emission by 2050.(See [Bergero2023 for net-zero CO2 emission in detail.) Since the expected line does not start to rise up in 2023 we evaluate that SAF is still in "incubation" phase.
As mentioned in the selection of FoMs, the cost is a key to assess SAF. Here, we summarize the governing equations given in the literature[[Bergero2023]]. The right figure is an example of the SAF cost with a)Power-to-Liquid (PtL) , c)Hydroprocessed Esters and Fatty Acids (HEFA), and e)Fischer-Tropsch (FT) [Bergero2023]. As pointed with the black arrows, the SAF and current jet fuel costs place at up-right and upper-middle to bottom-left, respectively, where the utopia point is bottom-left. Thus, the direction of technology advancement of SAF with these figures goes from up-right to bottom-left, as shown in the red arrows.
Alignment with Company Strategic Drivers
Our “company” is a SAF producer specializing in high-conversion Power to Liquid (PtL) type that is looking to enable net-zero CO2 emissions in aviation fuel. Specifically, our company is targeting a 30% total market share of the SAF market, with plans on enabling airline operations with SAF by 2035. The details of the strategic driver, alignments, and targets are as presented below:
Positioning of Company vs. Competition
The following table shows the comparison between different SAFs. Our “company” is a Power to Liquid (PtL) type SAF producer. To create the table, different sources are referred:ORear2022 for feedstocks and producers, DOE_SAF_data for feedstocks and fuel blending ratio, Detsios2023 for CO2-eq emission, AtJ price, and the technology readiness level, Bergero2023 for other prices. Our technology has a huge potential for the reduction of CO2, but the price is the most expensive and the technology readiness level is the lowest currently.
In the figure below, the company position in cost (price) v.s. conversion efficiency is shown. AtJ does not have data for the conversion efficiency, so it is represented with the dotted line. By reducing the feedstock costs and the conversion efficiency, the company will acquire the competitive position with higher conversion efficiency, leading high volume production. Note that there is a room of cost reduction much more than the other technologies as shown in Bergero2023.
Technical Model
The figure below shows the morphological matrix for our 2SAF roadmap. Each design choice is highly connected with the pathways: HEFA, AtJ, FT, and PtL. The connections of design choices are shown in the OPM. It is noted that, in SAF conversion, there are some shared choices between different pathways. Thus, those processes can be considered as the possibility of scaling even if we choose one pathway for the first step.
For the quantitative analysis, we consider three important models: cost, CO2 emission, and performance. The detailed explanation for each model is explained in the following subsections.
Cost model
One of the biggest challenges for SAF is cost as explained in section 1.4: Figures of Merit. We use the cost equations shown in the governing equations in chapter 1.4. Based on the equations, the sensitivity of each parameter is assessed in the following figures.
The normalized tornado charts show that the same order of sensitivity between feedstocks and conversion efficiency, though latter has more impact. We show the reference values used for the sensitivity analysis set based on the current cost (Bergero2023) in the following table.
The sample trade-off analysis is also shown in the following figures. It is assumed that the drastic change for conversion efficiency is difficult since the conversion process has become matured. Also, for HEFA and AtJ, the the cost reduction capability of feedstocks such as bio-fuel, animal fat, and cellulose are small, while the feedstocks of CO2 and H2 have a room for the cost reduction. With this figures, PtL is only capable of reducing the cost drastically, though significant effort is needed. We should also note that the cost of PtL is still higher than those of HEFA and FT even the 50% cost reduction of hydrogen and carbon cost, and 10% conversion efficiency improvement is assumed.
For FT, we do not have an equation for this roadmap, so we refer the represented values for 2022 shown in Destsios2023. The values are ranged in 1.6 - 2.6 USD/l, assuming 1Euro = 1.05USD.
CO2 emission model
It is difficult to find an equation, which assesses the impact of each design parameter on CO2 emission between variety of pathways. However, Detsios2023 summarizes the impact of each pathway on the CO2 emission (see following figure, where the doted line shows the current fossil jet fuel). We use the values for our trade-off analysis, assuming those values will not change much in the future. This approach would be plausible, thinking about the technology readiness level is 9 for HEFA, 8-9 for FT and AtJ, and 5-8 for PTL shown in Detsios2023. In the figure, FT and PtL are capable of large CO2 reduction compared with the current jet fuel.
Performance model
The impact of SAF on the performance is also important to be assessed. We choose the fuel consumption equation relative to the current fossil fuel of Jet A-1 shown in Kroyan2022. The equation is shown in the following figure. Once choosing a SAF, the fuel consumption relative to the Jet A-1 can be computed with the given properties of viscosity, density, and lower heating value. The equations are derived empirically with various types of SAF. The model shows a good agreement with the broad range of data used for its validation.
The tornado chart is shown as follows. The density is much smaller impact compared with the viscosity and the lower heating value.
As the reference, we choose HEFA in the source B(54) referred in Kroyan2023. The reference values are shown in the following table.
To show the sample computational results, the fuel consumption v.s. the blending ratio for the approved SAFs of HEFA, AtJ, FT, and SIP (out of scope in this roadmap) are shown in the following figure, excerpting from Kroyan2022. It should be noted that there is non-negligible impact up to 3.5% on the fuel consumption with 100% blending ratio assumed. Also, Kroyan2022 reported that there is no clear trends between fuel properties and jet engine performance, so we assume the performance change occurs with thrust fixed.
Financial Model
For financial assessment, we use the net present value (NPV) analysis. The key assumptions are summarized:
- abc
- cde
List of R&T Projects and Prototypes (R&D Portfolio)
bbb
Technology Strategy Statement
ccc
Key Publications, Presentations and Patents
A thorough survey of literature available in the public domain has been perused to gauge the current progression of various available SAF technologies [1]. Published in 2019, the survey details and highlights the theory and the multiple pathways behind key SAF technologies[1]. Figure P1 is presented below to illustrate the extensive search results of research publications related to SAF since 1960.
Figure P1. Web of Science data ( > 1960) of bio-aviation fuel publications, with bio-aviation (jet) fuel as main index, and ‘technical, policy, economics, environmental, LCA, combustion chemistry and properties as sub-indices [1]
One key enabling patent for the production of SAF that closely tracks the findings of the extensive literature survey from Figure P1 was granted in Jan 14, 2014 in the United States as Patent No. US8629310B2 (Classification:C10L1/06 and other 34 more classifications) [2]. Granted to associates from the Phillips 66 Company regarding “Transportation Fuels from Biomass Oxygenates", the patent describe a process through which “biocrude” or “oxygenate feedstocks derived from biomass” are converted into hydrocarbons through condensation/oligomerization and hydrodeoxygenation processes [2]. The key figure describing the patent processes are shown below in Figure P2:
Figure P2. US8629310B2 Patent Process Highlight[2]
This patent is especially relevant to the SAF technology because it presents one of the key pathways for aviation fuels to be produced from non-fossil sources. Numerous research papers that have been published describing the “oxygenic precursors from carbohydrates” conversion into SAF, and many are outlined in [1]. While the patent provides only a summary and does not detail the entire process through which the hydrocarbons are generated, it is nonetheless useful to see that it leverages methods that have been published regarding pathways that have enabled the “production of bio-aviation fuel and precursors through an improved fatty acid and biosynthetic pathway” [1] while also touching upon elements of pathways that enable the “production of bio-aviation fuel and precursors through the alcohol biosynthetic pathway” [1] as an option. Further analysis of the “fatty acid pathways” are cited in [1], among which [3] and [4] are especially relevant for understanding the microbial production of alkanes, which is a key enabler for the technology behind the patent.
Another key patent is in the category of Direct Air Capture (DAC), which extracts CO2 directly from the atmosphere[5]. DAC recently receives a lot of attention as a source of the feedstock of power to liquid (PtL) type SAF, because it is capable of producing SAF, reducing the amount of CO2 in the atmosphere [6]. US20170106330A1 (Classification:B01D53/0423 and other 6 more classifications) [7] is a design for DAC chamber as shown in Figure P3. DAC is one of our main focus areas for the development in the 2SAF roadmap, so the DAC related patent is quite important to be examined.
Figure P3. US20170106330A1 Direct Air Capture Device [7]
References
[1] M. Wang, R. Dewil, K. Maniatis, J. Wheeldon, T. Tan, J. Baeyens and Y. Fang, "Biomass-derived aviation fuels: Challenges and perspective," Progress in Energy and Combustion Science, vol. 74, pp. 31-49, 2019.
[2] E. Lotero, K. Fjare, T. Shi, S. Pansare and Y. Bao, "Transportation Fuels from Biomass Oxygenates". USA Patent US8629310B2, 14 January 2014.
[3] A. Schirmer, M. A. Rude, X. Li and S. B. Del Cardayre, "Microbial biosynthesis of alkanes," Science, vol. 329, no. 5991, pp. 559-562, 2010.
[4] Y. J. Choi and S. Y. Lee, "Microbial production of short-chain alkanes," Nature, vol. 502, no. 7472, pp. 571-574, 2013.
[5] K. Kackner, H-J Ziock and P. Grimes, "Carbon Dioxide Extraction from Air: Is It An Option?," InProceedings of the 24th Annual TechnicalConference on Coal Utilization&Fuel System, LA-UR-99-0583,1999.
[6] Y. J. Choi and S. Y. Lee, "Microbial production of short-chain alkanes," Energy Convers. Manag., vol. 292, 117427, 2023.
[7] C. Gebald, W. Meier, N. Repond, T. Ruesch, J. A. Wurzbacher, "Direct air capture device". USA Patent US20170106330A1, 20 April 2017.