Difference between revisions of "User talk:SAF Brazil"
Line 1: | Line 1: | ||
Roadmap Creators: [ | Roadmap Creators: [https://www.linkedin.com/in/gabriel-ruscalleda/], [https://www.linkedin.com/in/emilia-ospina-arango-89586584/] and [https://www.linkedin.com/in/dawitdagnaw/] | ||
Time Stamp: XX December 2024 | Time Stamp: XX December 2024 |
Revision as of 22:29, 4 October 2024
Roadmap Creators: [1], [2] and [3]
Time Stamp: XX December 2024
Technology Roadmap Sections and Deliverables
Our technology roadmap identifier is shown as:
- 3BSSAF - Brazil Solution - Sustainable Aviation Fuel
This indicates that we are dealing with a “level 3” roadmap at the product level, where “level 1” would indicate a market level roadmap, "level 2" would indicate our SAF Production and “level 3” or “level 4” would indicate an individual technology roadmap.
Roadmap Overview
(ADD OVERVIEW OF PROJECT)
Design Structure Matrix (DSM) Allocation
(DESCRIBE THE DSM)
Roadmap Model using OPM
The Object-Process-Model (OPM) of the 2SAF - Sustainable Aviation Fuel roadmap is presented in the figure with the Object-Process-Language (OPL) below.
Figures of Merit
(ADD)
Alignment with Company Strategic Drivers
Positioning of Company vs. Competition
Technical Model
CO2-eq emission model
Fuel consumption model
Feedstock availability model
Technical model integration
Financial Model
List of R&D Projects
Key Publications, Presentations and Patents
Technology Strategy Statement
References
[1] C. Bergero, G. Gosnell, D. Gielen, S. Kang, M. Bazilian and S. J. Davis, "Pathways to net-zero emissions from aviation," Nature Sustainability, vol. 6, no. 4, pp. 404-414, 2023.
[2] E. G. O'Rear, W. Jones, G. Bower, E. Wimberger and J. Larsen, "Sustainable Aviation Fuels: The Key to Decarbonizing Aviation," Rhodium Group, 2022.
[3] U.S. Department of Energy, "Alternative Fuels Data Center: Sustainable Aviation Fuel," U.S. Department of Energy, [Online]. Available: https://afdc.energy.gov/fuels/sustainable_aviation_fuel.html. [Accessed 1 December 2023].
[4] N. Detsios, S. Theodoraki, L. Maragou, K. Atsonios, P. Grammelis and N. G. Orfanoudakis, "Recent advances on alternative aviation fuels/pathways: A critical review," Energies, vol. 16, no. 4, p. 1904, 2023.
[5] B. Ausilio , N. Bitossi, L. German, A. Harris and K. Leow, "Sustainable Aviation Fuels : Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation," Johnson Matthey Technology Review, vol. 64, no. 3, pp. 263-278, 2020.
[6] Internal Revenue Service, "Sustainable Aviation Fuel Credit | Internal Revenue Service," Internal Revenue Service, 2023. [Online]. Available: https://www.irs.gov/credits-deductions/businesses/sustainable-aviation-fuel-credit#:~:text=Amount%20of%20Credit,that%20the%20reduction%20exceeds%2050%25.. [Accessed 1 December 2023].
[7] Y. Kroyan, M. Wojcieszyk, O. Kaario and M. Larmi, "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, vol. 255, p. 124470, 2022.
[8] C. Wolff and D. Riefer, "Clean skies for tomorrow: Sustainable aviation fuels as a pathway to net-zero aviation," in Proceedings of the World Economic Forum, Davos-Klosters, 2020.
[9] McKinsey, "Clean Skies for Tomorrow: Guidelines for a Sustainable Aviation Fuel Blending Mandate in Europe," 2021.
[10] grants.gov, "VIEW GRANT OPPORTUNITY," 25 September 2023. [Online]. Available: https://grants.gov/search-results-detail/350315. [Accessed 1 December 2023].
[11] Mordor Intelligence, "North American Aviation Market Size & Share Analysis," Mordor Intelligence, 2023.
[12] Mordor Intelligence, "European Airline Industry Size & Share Analysis - Growth Trends & Forecasts," Mordor Intelligence, 2023.
[13] M. Wang, R. Dewil, K. Maniatis, J. Wheeldon, T. Tan, J. Baeyens and Y. Fang, "Biomass-derived aviation fuels: Challenges and perspective," Progress in Energy and Combustion Science, vol. 74, pp. 31-49, 2019.
[14] E. Lotero, K. Fjare, T. Shi, S. Pansare and Y. Bao, "Transportation Fuels from Biomass Oxygenates". USA Patent US8629310B2, 14 January 2014.
[15] A. Schirmer, M. A. Rude, X. Li and S. B. Del Cardayre, "Microbial biosynthesis of alkanes," Science, vol. 329, no. 5991, pp. 559-562, 2010.
[16] Y. J. Choi and S. Y. Lee, "Microbial production of short-chain alkanes," Nature, vol. 502, no. 7472, pp. 571-574, 2013.
[17] K. Kackner, H-J Ziock and P. Grimes, "Carbon Dioxide Extraction from Air: Is It An Option?," InProceedings of the 24th Annual TechnicalConference on Coal Utilization&Fuel System, LA-UR-99-0583,1999.
[18] Y. J. Choi and S. Y. Lee, "Microbial production of short-chain alkanes," Energy Convers. Manag., vol. 292, 117427, 2023.
[19] C. Gebald, W. Meier, N. Repond, T. Ruesch, J. A. Wurzbacher, "Direct air capture device". USA Patent US20170106330A1, 20 April 2017.