Difference between revisions of "Space-based Solar Power"

From MIT Technology Roadmapping
Jump to navigation Jump to search
Line 29: Line 29:


[[File: Key_Equations_SPS.png |500px]]
[[File: Key_Equations_SPS.png |500px]]
=References=
[1] Azadeh, K., de Koster, R., & Roy, D. (n.d.). Material flow in a typical automated warehouse [Figure 1]. In Robotized and Automated Warehouse Systems: Review and Recent Developments. Retrieved from
[2] Conveyco. (n.d.). Autonomous mobile robots (AMRs) [Image]. Retrieved October 9, 2024, from

Revision as of 04:53, 10 October 2024

Technology Roadmap Sections and Deliverables

  • 2SSP - Space-based Solar Power

We’ve chosen the acronym 2SSP to represent our technology of Space-based Solar Power. The 2 in our acronym implies the system level, within the level 1 system of renewable energy source​. Our level 2 system level can be broken down into level 3 subsystems (high-efficiency solar panels​, wireless power transfer, etc.) and level 4 components (photovoltaic materials​, antenna structures, etc.).

Roadmap Overview

The working principle of Space-based Solar Power is depicted in the below.

Space-based solar power article.png

This technology transforms solar radiation using a spacecraft with solar panels, then wirelessly transmits it. The energy is then captured by a receiver and converted to electricity before storage and/or distribution.​

A large solar array would be used to take advantage of the higher intensity sunlight outside of a planet's atmosphere using existing solar panel technology, then the electricity would be converted to an advantageous frequency for wirelessly transmitting long distances in a focused and steerable way – a key technical challenge. Finally, it would be received and converted back to electricity at the ground station or satellite for use.​

Design Structure Matrix (DSM) Allocation

DSM SPS.png

Roadmap Model using OPM

OPM SPS.png
OPM2 SPS.png

Figures of Merit

FOM SPS.png

Key Equations SPS.png


References

[1] Azadeh, K., de Koster, R., & Roy, D. (n.d.). Material flow in a typical automated warehouse [Figure 1]. In Robotized and Automated Warehouse Systems: Review and Recent Developments. Retrieved from

[2] Conveyco. (n.d.). Autonomous mobile robots (AMRs) [Image]. Retrieved October 9, 2024, from