Difference between revisions of "Space Booms"

From MIT Technology Roadmapping
Jump to navigation Jump to search
Line 7: Line 7:
There are several types of booms that have appeared in our research, each with varying degrees of complexity:
There are several types of booms that have appeared in our research, each with varying degrees of complexity:


[[File:BoomTypes.png]]


There may be other specific types of booms, but these are space industry standards and encompass the vast majority of space booms used since the 1960.  This research does not focus on static booms because they are constrained by launch vehicle fairing.  The rest of the boom types on the other hand use innovation and technological advances to fit within small spaces, but allow instruments to conduct tests well away from the primary mission vehicle.  This leads to a value function for booms.  To take up as little space, to use as little mass, and to maintain affordability, allowing the maximization of spacecraft features and instruments.
There may be other specific types of booms, but these are space industry standards and encompass the vast majority of space booms used since the 1960.  This research does not focus on static booms because they are constrained by launch vehicle fairing.  The rest of the boom types on the other hand use innovation and technological advances to fit within small spaces, but allow instruments to conduct tests well away from the primary mission vehicle.  This leads to a value function for booms.  To take up as little space, to use as little mass, and to maintain affordability, allowing the maximization of spacecraft features and instruments.

Revision as of 13:37, 1 October 2020

Technology Roadmap Sections and Deliverables

Roadmap Overview

This roadmap is a level 3 (sub-system) assessment of space booms. Space booms are structures used to position space instruments in relationship to the primary mission vehicle. The vehicles are the level 2 (system) for this roadmap and the hardware and software elements of the booms are also level 3 (components). Space booms could fall into many L1 category, but the focus here will be on enabling infrastructure. These may not seem like glamorous pieces of technology, but they have a glamorous history of enabling space instrumentation by providing the right geometry, relationships, support and protection. Some are as simple as a singular metal rod physically connecting solar panels to spacecraft, but others are transforming apparatuses that launch in necessarily compact forms only to support instruments over great distances once deployed. For this research, primary vehicle and instrument are relative terms; it may be a satellite is the primary vehicle with space boom attached, but the satellite can also be an instrument relative to the Space Shuttle.

There are several types of booms that have appeared in our research, each with varying degrees of complexity:

BoomTypes.png

There may be other specific types of booms, but these are space industry standards and encompass the vast majority of space booms used since the 1960. This research does not focus on static booms because they are constrained by launch vehicle fairing. The rest of the boom types on the other hand use innovation and technological advances to fit within small spaces, but allow instruments to conduct tests well away from the primary mission vehicle. This leads to a value function for booms. To take up as little space, to use as little mass, and to maintain affordability, allowing the maximization of spacecraft features and instruments.

The research into booms is ongoing, but there is already a celebrity list of booms that are both interesting and demonstrate great engineering. CanadaArms 1 and 2, the Magnetometer Boom that crashed with Cassini into Saturn, and the longest rigid span space structure ever, the Able Engineering ADAM Mast that supported the Space Shuttle Topography Mapping in 2000. From our growing list of research subjects, a reasonably complete list of boom parts is available; enabling a consistent decomposition across the various types. The decomposition is listed in the OPM and allows for Level 4 (component) analysis to be accomplished.

Space booms are not the lead actors for the space movie. However, they are critical infrastructure and enable significant improvements in capability. To make gains in the space boom technology arena means taking advantage of component technology and advanced material sciences to reduce cost, mass, and launch volume to span ratio in order to maximize space mission effectiveness.

Design Structure Matrix (DSM) Allocation

Roadmap Model using OPM

PSet2 OPD.png

Figures of Merit