Main Page
MIT 16.887-EM.427 Fall 2019 Course
We will be using this wiki platform to record progress on the semester-long technology roadmapping projects completed in teams of two. As you progress through your projects, be sure to keep your project pages up to date as each Assignment calls for. Also, be sure to have back ups of the information you place on your project page to avoid any accidental deletions that may occur from joint editing of a wiki (however, this can be more easily avoided by only editing your project's page, and not this main page or any other team's).
If you have trouble editing the wiki, please let us know.
Class Project - Technology Roadmaps
Below, each team will create a page for their technology roadmap which will be built up as the semester progresses. For an example, see the Sample Technology Roadmap below taken from Chapter 8 of the text. You may use this sample as a template and also as a guide for how to edit/format your own wiki page, but please be sure NOT to edit the Sample Technology Roadmap, simply copy over any desired formatting, headers, etc. over to your project page.
Sample Technology Roadmap - Solar Electric Aircraft, by de Weck, Haji and Trujillo
We provide a notional technology roadmap for solar-electric aircraft as a potential new business category. The potential market and business applications for this type of aircraft, also known as High-Altitude-Pseudo-Satellites (HAPS) includes military surveillance, civilian research and observation, and radio communications relays, amongst others.
Ballistic Vests, by Li and Lew
Short description of your selected technology here.
Plant Genetic Improvement, by Lordos, Smith and Slominski
Humans have been improving the genome of useable plants for millenia through unintentional, and later intentional selection. The last 100 years have seen increasing advances in artificial methods to improve the genetics of useful plants through increasingly scientific approaches.
Satellite Data Communication, by Robinson, Wan, and Wilson
Satellite-based internet/voice access is enabled by high-throughput satellites (HTS), which provide many times greater data throughput than conventional satellites. Data encoded in radio waves is sent between the ground station’s transceiver, relayed via the satellite, and the modem at the user’s end. Some next-generation satellite systems follow low-earth orbit rather than geosynchronous orbits, using a constellation formation to keep in constant touch with ground stations.
In-Space Additive Manufacturing, by Lee, Mandal, and Moraguez
Short description of your selected technology here.
Wind Turbine - Energy Harvesting, by Wainer, Sakhamuru, and Fukatsu
Wind energy is one solution to changing over to a cleaner energy source than carbon dense fuel power plants. By harnessing the kinetic energy of the air around us, and transforming it into electricity, wind turbines can relieve some of the power needs of the growing population.
Autonomous System for Ground Transport, by Chun and Yang
The autonomous system for ground transport has been surging in the last decade but also possesses an origin dated almost a century back. It is a technology that has not just historical information but also referential data since it has been employed in other analogous systems such as autopilot on airplanes. By reviewing relevant metrics and evaluating technology readiness level, we construct roadmap for autonomous system for ground transport in order to collect insights and illustrate guidance on where and how this technology will move forward.
Augmented, Virtual, and Mixed Reality, by Baylor and LeBlanc
Augmented, virtual, and mixed realities reside on a continuum and blur the line between the actual world and the artificial world. We offer a roadmap to explore the relationships of this technology, align capabilities to future market needs, and define a timeline for technology maturation and adoption.
Energy Storage via Battery, by Cadario, Johnson, and Tamura
Short description of your selected technology here.
Orbital Launch Vehicles Roadmap, by Kharsansky
Orbital launch vehicles (LV) are internally rocket-propelled vehicles used to carry payloads from Earth’s surface to low earth orbit and beyond. This roadmap explores the capacity that the Human race has to put payloads in orbit as a technology enabler for future space and planetary exploration.
High-Speed Rail, by Enti, de Filippi, Kimura, and Soeda
Short description of your selected technology here.
E-commerce: Reverse-Procurement Auctions, by Ravenel and Goolsby
Short description of your selected technology here.
Sparse Apertures for Next Generation Optical Space Telescopes, by Chris and Michael
The angular resolution of a telescope is proportional to the size of the aperture. The mass and thus cost of space telescopes increases exponentially with aperture diameter. There is a need for systems that can produce the equivalent of a large aperture with low mass.
Remote Operated Processing Platform, by Asa, Johnson, Rahill
Remote Operated Processing Platform for Offshore Oil and Gas
Random Forest in Data Analytics, by Fei Yang, Dylan Toshinari Muramoto, and Phil Schmedeman
Random Forest is an ensemble Machine Learning technique to boost the accuracy of prediction for future based on the past
Note: the rest of your roadmap goes in your project page which can be created by following how the sample roadmap page is created above. Click the Edit tab above and find the Sample Technology Roadmap section...you will see that a double bracket enclosing a phrase will automatically create an empty page with that name.
Getting started
- User's Guide for information on using the wiki software.
- Configuration settings list
- MediaWiki FAQ