Earth Observation Satellites

From MIT Technology Roadmapping
Jump to navigation Jump to search

Technology Roadmap Sections and Deliverables

Roadmap Overview

Design Structure Matrix (DSM) Allocation

We have designated Earth Observation Satellites (2EOS) as a Level-2 Technology. It is present in the Level 1 Markets of 1) Low-Earth Orbital Technologies and Remote Sensing Technologies. For other examples of intersections on the basis of these markets, see the following figure:

Marketintersections.png


Our Design Structure Matrix (DSM) is as follows:

DesignStructureMatrixV1.png

Legend: Green: Direct Component (solar arrays are a component of the Power Subsystem) Yellow: Cross-relationships between technologies and other subsystems (heat pipes interact with all other subsystems to transfer heat) Orange: Physical interactions between Level four technologies within the same subsystem (solar arrays interact with any deployment and angling mechanisms)

Roadmap Model using OPM

Our Object Process Diagram (OPD) is pictured below, complete with a Level Zoom to examine components of the Imaging Subsystem.

RemoteSensingSatelliteV3.jpg

RemoteSensingSatelliteImagingPayloadV3.jpg

Figures of Merit (FOMs)

Several relevant Figures of Merit exist for Earth Observation Satellites. The imaging system in particular is constrained by four types of resolution:

  • Spatial [m]
  • Spectral [nm]
  • Temporal [days] (also called Return Time)
  • Radiometric [bits]

We will consider spatial resolution as principle among these, for most applications, including surveying, land management, urban planning, and disaster relief. Some hard tradeoffs exist between these. Generally, spatial resolution decreases with increasing spectral resolution. A minimum threshold of energy must reach the imaging sensor in order to resolve an image, and the smaller the band of electromagnetic radiation considered, the less energy received. Wider accepted bands (panchromatic) have more difficulty discerning color and material reflectivity, but gain in spatial resolution. Radiometric resolution is constrained primarily by cost and the available size for the imaging payload within the bus. The following figures show estimations of the improvement in spatial resolution over time. ResolutionFOMlinscale.png ResolutionFOMlogscale.png (Left: Zhou 2010; Right: Fowler 2010)

The 10x improvement in spatial resolution over a 13-15 year cycle suggests a decline rate in minimum resolvable distance (increase in resolution) of ~14% per year.


Other highest-relevance FOMs include the bit error rate (BER) of the communications channel and the power draw of the imager relative to the power output of the solar arrays. If the BER is too high, it can either slow the system down by necessitating redundancy, or effectively reduce the spatial resolution by decreasing the confidence of any one pixel, necessitating spatial aggregation of the data in post-processing. If the power draw of the imager is too high, it may reduce the rate at which is it able to capture images, creating data gaps and lowering temporal resolution. The improvement of solar cell power efficiency over time is shown below: Solarcellefficiencyrecords.jpg (NREL 2020)

The Bit-Error Rate is a function of some systemic factors like modulation scheme, but many extrasystemic variables, including interference from transmission medium, and as such no clear figure showing improvement over time has been identified.