Autonomous ElectricVTOL Transport Aircraft

From MIT Technology Roadmapping
Revision as of 06:08, 2 November 2023 by Cbriggi (talk | contribs)
Jump to navigation Jump to search

Autonomous Electric Vertical Take-off and Landing (eVTOL) Transport Aircraft

Roadmap Overview

Autonomous Electric Vertical Take-off and Landing (eVTOL) Transport Aircraft are a wide category of unpiloted, electrically powered aircraft for the purpose of transporting goods or organisms. They may fall under the Cargo Air Vehicle (CAV) or Passenger Air Vehicle (PAV) categories. The aircraft have relatively small footprints and are well suited for navigation in urban environments. They are currently in development by various companies ranging from traditional aerospace companies (Airbus and Boeing) to new competitors from different backgrounds (Amazon to Rolls-Royce) and widely believed to have a huge impact on the future of mobility. While individual components of the technology are well developed, the focus here is the assembly and integration of autonomy, which requires increased efficiency, increased reliability, improved infrastructure, and significant cost reductions from the current state.

WiskCora.png

Image Source: https://wisk.aero/aircraft/

DSM Allocation

This would be related to the following existing roadmaps: 2SEA, 2BEV, 2SPA, 2EVL, 3ESB, 3BAS.

The 2-AETA tree from the DSM shows it as a subste of autonomous urban transportation (1AUT). It consists of various major subsystems, including airframe (3AF), avionics (3AVC), mechanical controls (3MFC), and the propulsion system (3PS). Those subsystems require various component level technologies, including lift surface (4LS), communication system (4CS), sensors (4SRS), software (4SW), electric motor (4EM), propeller (4PRP), and battery (4BAT).

2AETA DSM.png

2AETA DSM2.png

Roadmap Model using OPM

2AETA OPM.png

2AETA OPM2.png

2AETA OPM3.png

Figures of Merit (FOM)

2AETA FOM1.png

2AETA FOM2.png

Battery Energy Density FOM

We estimate that electric battery technology is currently slowing and nearing the stagnation point. Based on the current achievable energy densities of Li-ion batteries, we are at or near the theoretical limit unless there is a major breakthrough in solid-state technologies or non-conventional oxide chemistries. The maximum theoretical specific energy density for a max 4.2V battery is estimated to be between 380-460 Wh / kg. Current understanding of technology has the densest lithium-ion batteries generally hovering below 300 Watt hours per kilogram (Wh/kg); however a few companies (CATL and Amprius) claim batteries boasting a 500 Wh/kg density, which could potentially mean regional electric transport could become viable in the near future.

2AETA BAT FOM1.png

Lithium-ion batteries emerged onto the commercial market in the 1990s and since then, the energy density has been doubling every 10-15 years.

2AETA BAT FOM2.png

2AETA BAT FOM3.png

2AETA BAT FOM4.png

Payload and Range FOMs

2AETA FOM3.png

2AETA FOM4.png

2AETA FOM5.png

Alignment with Company Strategic Drivers

Positioning of Company vs. Competition


Technical Model: Morphological Matrix and Tradespace

To be completed by Johannes

Key Publications and Patents

To be completed by Johannes

References

1. https://www.precedenceresearch.com/evtol-aircraft-market#:~:text=Based%20on%20Range%2C%20the%20global,and%20landing%20(eVTOL)%20aircraft. 2. https://www.eucass.eu/doi/EUCASS2022-7362.pdf 3. https://www.nature.com/articles/s41586-021-04139-1 4. https://ev-lectron.com/blogs/blog/electric-car-maintenance-cost#:~:text=On%20average%2C%20EV%20drivers%20would,clocking%20in%20at%2015%2C000%20miles. 5. https://batteryuniversity.com/article/bu-304a-safety-concerns-with-li-ion 6. https://pubs.acs.org/doi/10.1021/acsenergylett.9b02574#:~:text=For%20regional%20aircraft%2C%20the%20specific,miles%20according%20to%20Figure%203. 7. https://www.nature.com/articles/s41586-021-04139-1