Difference between revisions of "Main Page"

From MIT Technology Roadmapping
Jump to navigation Jump to search
Line 32: Line 32:
== [[Team 11]] ==
== [[Team 11]] ==
== [[Team 12]] ==
== [[Team 12]] ==
== [[Team 13]] ==
== [[Recommendation Systems]] ==
 
==Roadmap Overview==
Recommendation systems have become a critical engine of the modern digital economy, allowing businesses to exploit user behaviors and similarities to develop specific notions of preference and relevance for their customers. Today, recommendation systems can be found “in the wild” in many different services ubiquitous to daily digital life, filtering the content we see (eg Spotify, Tik Tok, Netflix), products we are advertised (eg Instagram, Amazon), and humans we connect to (eg Tinder, LinkedIn). Against the backdrop of Level-1 commercial user understanding or personalization, we develop a Level-2 roadmap for Recommendation Systems (2RS) below.
 
== [[In-Situ Power Generation for AUVs]], by Tuinstra, Shoji, and Schlessinger ==
== [[In-Situ Power Generation for AUVs]], by Tuinstra, Shoji, and Schlessinger ==



Revision as of 20:28, 27 September 2020

Getting started

Class Project - Technology Roadmaps

Below, each team will create a page for their technology roadmap which will be built up as the semester progresses. For an example, see the Sample Technology Roadmap below taken from Chapter 8 of the text. You may use this sample as a template and also as a guide for how to edit/format your own wiki page, but please be sure NOT to edit the Sample Technology Roadmap, simply copy over any desired formatting, headers, etc. over to your project page.

Sample Technology Roadmap - Solar Electric Aircraft, by de Weck, Haji and Trujillo

We provide a notional technology roadmap for solar-electric aircraft as a potential new business category. The potential market and business applications for this type of aircraft, also known as High-Altitude-Pseudo-Satellites (HAPS) includes military surveillance, civilian research and observation, and radio communications relays, amongst others.

MIT 16.887-EM.427 Fall 2020 Course

We will be using this wiki platform to record progress on the semester-long technology roadmapping projects completed in teams of two. As you progress through your projects, be sure to keep your project pages up to date as each Assignment calls for. Also, be sure to have back ups of the information you place on your project page to avoid any accidental deletions that may occur from joint editing of a wiki (however, this can be more easily avoided by only editing your project's page, and not this main page or any other team's).

If you have trouble editing the wiki, please let us know.

Technology 1, by A and B

This technology is important because ...

Team 1

Team 2

Team 3

Team 4

Team 5

Team 6

Security Solutions for Virtualized Healthcare, by Hecht and Spiewak

Team 8

Team 9

Electric Vehicle Charging Technologies, by Chafekar, Fischer

Team 11

Team 12

Recommendation Systems

Roadmap Overview

Recommendation systems have become a critical engine of the modern digital economy, allowing businesses to exploit user behaviors and similarities to develop specific notions of preference and relevance for their customers. Today, recommendation systems can be found “in the wild” in many different services ubiquitous to daily digital life, filtering the content we see (eg Spotify, Tik Tok, Netflix), products we are advertised (eg Instagram, Amazon), and humans we connect to (eg Tinder, LinkedIn). Against the backdrop of Level-1 commercial user understanding or personalization, we develop a Level-2 roadmap for Recommendation Systems (2RS) below.

In-Situ Power Generation for AUVs, by Tuinstra, Shoji, and Schlessinger

Team 15

Team 16

Team 17

Team 18

MIT 16.887-EM.427 Fall 2019 Course

Ballistic Vests, by Li and Lew

This technology is a lifesaving technology to aid military personnel and law enforcement during their daily activities. Ballistic Vests have various ratings for the level of protection and a myriad of different materials are used to absorb the kinetic energy of the projectile threat. We are focusing on the materials used in ballistic vests.

Plant Genetic Improvement, by Lordos, Smith and Slominski

Humans have been improving the genome of useable plants for millenia through unintentional, and later intentional selection. The last 100 years have seen increasing advances in artificial methods to improve the genetics of useful plants through increasingly scientific approaches.

Satellite Data Communication, by Robinson, Wan, and Wilson

Satellite-based internet/voice access is enabled by satellites, which provide relay to extend communication beyond traditional (terrestrial) line of site of the network and users. Data encoded in radio waves is sent between the ground station’s transceiver, relayed via the satellite, and the modem at the user’s location. Advances in technology include High Throughput Satellites (HTS) and some next-generation satellite systems may follow low-earth orbit rather than geosynchronous orbits, which would reduce latency dramatically.​

In-Space Additive Manufacturing, by Lee, Mandal, and Moraguez

In-space additive manufacturing involves the fabrication, assembly, and integration of components beyond Earth’s atmosphere. Technologies in this area focus on fabricating a product with improved performance or reduced cost compared to existing Earth-fabricated products using manufacturing equipment with a rapid production rate, long life, and low size, weight, and power (SWaP). The additive manufacturing units use the layer-wise deposition of material to build up required component geometries. The energy source for the addition of material can either be mechanical, thermal, electrical, or chemical. For in-space additive manufacturing to prove viable, it must be possible to fabricate a variety of components in the required materials and geometries while meeting requirements on tolerances, surface roughness, and lead time. The reference case in the technology roadmap is the manufacturing of spare parts for a roundtrip Mars mission.

Wind Turbine - Energy Harvesting, by Wainer, Sakhamuru, and Fukatsu

Wind energy is one solution to changing over to a cleaner energy source than carbon dense fuel power plants. By harnessing the kinetic energy of the air around us, and transforming it into electricity, wind turbines can relieve some of the power needs of the growing population.

Autonomous System for Ground Transport, by Chun and Yang

The autonomous system for ground transport has been surging in the last decade but also possesses an origin dated almost a century back. It is a technology that has not just historical information but also referential data since it has been employed in other analogous systems such as autopilot on airplanes. By reviewing relevant metrics and evaluating technology readiness level, we construct roadmap for autonomous system for ground transport in order to collect insights and illustrate guidance on where and how this technology will move forward.

Mixed Reality (Augmented & Virtual), by Baylor and LeBlanc

Augmented, virtual, and mixed realities reside on a continuum and blur the line between the actual world and the artificial world. We offer a roadmap to explore the relationships of this technology, align capabilities to future market needs, and define a timeline for technology maturation and adoption.

Energy Storage via Battery, by Cadario, Johnson, and Tamura

A battery is an assemblage of cells (containing two electrodes, an electrolyte traditionally liquid, embedded in a housing) connected electrically to provide voltage and current. Simple, isn't it?! We focus on Lithium-ion batteries, which have taken the world of electronic devices since the 90's, are booming for transportation uses, and which still provide formidable challenges in a long-term improvement perspective.

Orbital Launch Vehicles Roadmap, by Heilbrun, Horton, and Kharsansky

Orbital launch vehicles (LV) are internally rocket-propelled vehicles used to carry payloads from Earth’s surface to low earth orbit and beyond. This roadmap explores the capacity that the Human race has to put payloads in orbit as a technology enabler for future space and planetary exploration.

High-Speed Rail Safety, by de Filippi, Kimura, and Soeda

High-Speed Rail is a classification of a passenger rail transportation system that operates at high-speed with high voltage electricity. The International Union of Railways defines high-speed rail as systems of rolling stock and infrastructure which regularly operate at or above 250 km/h on new tracks, or 200 km/h on existing tracks. Currently, rolling stock obtains electricity for propulsion is operated by a driver who follows signals and communicates with one or more control center(s).

Online Reverse Procurement Marketplaces and Auctions, by Ravenel and Goolsby

Online reverse procurement marketplaces and auctions are online marketplaces and auctions where service providers bid on different service requests from people and companies in need of contract work. Examples include Upwork, Mechanical Turk, and other industry specific markets and auctions.

Sparse Apertures for Next Generation Optical Space Telescopes, by Chris and Michael

The angular resolution of a telescope is proportional to the size of the aperture. The mass and thus cost of space telescopes increases exponentially with aperture diameter. There is a need for systems that can produce the equivalent of a large aperture with low mass.

Remote Operated Processing Platform, by Asa, Johnson, Rahill

Remote Operated Processing Platform for Offshore Oil and Gas

Random Forest in Data Analytics, by Yang and Muramoto

Random Forest is an ensemble Machine Learning technique to boost the accuracy of prediction for future based on the past

Rocket Engines, by Heilbrun and Horton

Rocket engines have been evolving from their humble beginnings as fireworks since the year 900. In this section, we address the history, inspiration, design, and evolution of rocket engines. We conclude with in-depth discussions of figures of merit and their change over time. Rocket engines are the enabling technology for the growing field of space commerce. Their evolution will arguably enable the future of commercialization of near-earth and more distant markets.

Computer-Aided Detection Leveraging Machine Learning and Augmented Reality, by Nestor Figueroa, Masato Kawano, and Tiago Koga

Augmented reality and artificial intelligence are complementary technologies. Smaller, faster, and more accurate AI models will be the engines of AR functionality, given their ability to track and understand the 3D world. AI will also continue to enhance AR experiences, adding effects and interactivity to AR scenes. Applications like: image and scene labeling, object detection, semantic segmentation and occlusion, pose estimation, text recognition and translation, audio recognition. There are tremendous applications in medicine, construction and urban planning, entertainment, security, among others.

In Space Propellant Depot, by (Tom)Tomohisa Okamoto, Gautam Madhivanan

“As early as 1928, scientists studying interplanetary travel began arguing that pre-positioning propellants in orbit would be required for any sustainable large-scale travel beyond Earth.”[1] In space propellant depots sustain cryogenically cooled fuels and oxidizers like liquid hydrogen and liquid oxygen. External sources of heat coming from the sun, solar energy reflected from the earth and IR emitted from the earth need to be mitigated using solar shields. In order to prevent the liquid propellent from becoming gas cyro-coolers powered by solar panels can be used as well.

Smart 3D Cameras, by Enti

3D Cameras are a class of low-cost depth sensors that are used in robotics, gaming and autonomous cars for perceiving the environment and detecting and identifying objects. The 3D camera system creates 3D point clouds of the environment and provides camera pose information which is then used by connected sub-systems for mapping, autonomous navigation. This roadmap captures the evolution of 3D camera technology from passive stereo cameras and structured light to smart stereo cameras.


Note: the rest of your roadmap goes in your project page which can be created by following how the sample roadmap page is created above. Click the Edit tab above and find the Sample Technology Roadmap section...you will see that a double bracket enclosing a phrase will automatically create an empty page with that name.